
W poprzednim artykule pokazaliśmy, dlaczego osnowa geodezyjna jest fundamentem cyfrowej kopii zakładu przemysłowego i warunkiem długofalowej spójności danych. To jednak dopiero pierwszy krok. Równie istotne jest to, w jaki sposób dane są zbierane w terenie.
W praktyce skanowania laserowego 3D wciąż często spotykamy się z podejściem, w którym kluczowe znaczenie przypisuje się parametrom dobrze wyglądającym w specyfikacjach technicznych: maksymalnemu zasięgowi skanera, bardzo wysokiej rozdzielczości czy deklarowanej dokładności pojedynczego pomiaru. Doświadczenie pokazuje jednak, że o realnej jakości danych decydują zupełnie inne czynniki.
Poniższy tekst opiera się na wieloletnich doświadczeniach zespołu 3Deling oraz obserwacjach Pawła Dudka, CEO 3Deling, zdobytych na przestrzeni niemal dwóch dekad pracy ze skanowaniem laserowym 3D – od pierwszych testów technologii po realizację dużych, złożonych projektów przemysłowych.
skanowanie laserowe 3d pomiary terenowe
Pierwsze doświadczenia ze skanowaniem 3D – krótka lekcja pokory
Pamiętam „testy” naszego pierwszego skanera – był rok 2007. Ustawiliśmy bardzo dużą rozdzielczość skanowania, bo przecież „musi być gęsto”, żeby dane były dobre i żeby nic nie umknęło. Lekkie zdziwienie, że skan potrwa dobre 30 minut, ale nic – czekamy na efekt.
Skan się kończy, zgrywamy dane. Potem „przemielenie” chmury i otwarcie w Pointools View (jeszcze wtedy nie Bentley Pointools). Trochę to trwało, ale w końcu jest – bardzo „ciężki” skan, dane widać jeszcze w bardzo dużej odległości. Widać nawet komin nieistniejącej już ciepłowni, oddalony o kilkaset metrów. Robiło wrażenie.
Sytuacja miała miejsce prawie 20 lat temu. Każdy z nas miał już wtedy pewne doświadczenie w skanowaniu laserowym 3D i wykonywaliśmy takie pomiary dość regularnie. Patrząc jednak z dzisiejszej perspektywy, widać wyraźnie, jak wiele jeszcze wtedy nam brakowało – szczególnie w kontekście dużych projektów.
Dziś nasi geodeci wykonują nawet kilka tysięcy skanów na jednym obiekcie, łączonych w jednym układzie współrzędnych, często w trudnych warunkach i pod presją czasu. A na końcu i tak liczy się jedno – żeby klient otrzymał możliwie najlepsze dane.
Dlaczego dziś skanujemy inaczej?
W praktyce podejście do skanowania wygląda dziś zupełnie inaczej. I nie dlatego, że chcemy skanować „szybko i byle jak”, zamknąć projekt i iść dalej. Wręcz przeciwnie.
Aby uzyskać jak najbardziej kompletną i użyteczną reprezentację geometryczną obiektu, kluczowa jest odpowiednia liczba skanów oraz ich rozmieszczenie, a nie maksymalna rozdzielczość czy zasięg skanera.
Rozdzielczość skanów – dlaczego „gęściej” nie zawsze znaczy „lepiej”
W praktyce bardzo gęste skany są po prostu „ciężkie”. Trudniej się z nimi pracuje – zarówno ze względu na ograniczenia oprogramowania, jak i możliwości sprzętowe.
Dlatego pojedyncze skany bardzo często są filtrowane, a ich rozdzielczość zmniejszana. W efekcie chmura punktów po tzw. unifikacji potrafi być nawet 5–6 razy „lżejsza”, a jednocześnie znacznie wygodniejsza w użyciu – bez realnej utraty informacji istotnej z punktu widzenia projektowania.
Zasięg skanera – parametr rzadko wykorzystywany w pełni
Większość skanerów, których używamy, ma zasięg znacznie przekraczający 100 metrów – jeden z nich nawet do 600 m. W praktyce jednak dane wykorzystywane są zwykle z dużo mniejszych odległości.
-
dla wnętrz: zazwyczaj do ok. 30 m,
-
na zewnątrz: do ok. 50 m.
Pełny zasięg skanera wykorzystuje się rzadko – głównie przy bardzo wysokich obiektach, do których nie ma bezpiecznego dostępu.
Kompletność reprezentacji geometrycznej – parametr kluczowy
To najważniejszy parametr jakości danych – i jednocześnie taki, którego w 100% praktycznie nigdy nie da się osiągnąć. Zawsze pojawiają się tzw. „cienie” lub martwe pola, czyli miejsca bez danych.
Można je jednak znacząco ograniczyć, wykonując dużą liczbę skanów z różnych pozycji, wysokości i odległości. Z perspektywy czasu można więc jednoznacznie stwierdzić, że to właśnie liczba skanów jest kluczowym czynnikiem wpływającym na jakość końcowej reprezentacji geometrycznej obiektu.
Liczba skanów a realna praca projektowa
Często pomagamy klientom przygotowującym się do digitalizacji zakładów w tworzeniu specyfikacji przetargowych. Widzimy wtedy, że mniej doświadczeni inwestorzy skupiają się głównie na parametrach, które najlepiej „wyglądają na papierze”:
-
zasięg (im dalej, tym lepiej),
-
rozdzielczość (im gęściej, tym lepiej),
-
dokładność (najlepiej 1 mm).
Rozumiemy to – sami kiedyś myśleliśmy podobnie. Dlatego staramy się te oczekiwania „odczarować” i zwrócić uwagę na to, co naprawdę ma znaczenie. A tym parametrem jest liczba skanów.
Tam, gdzie obiekt jest dobrze pokryty skanami, a geometria pomiaru sensownie zaplanowana, późniejsze modelowanie przebiega sprawnie. Dane są czytelne, nie ma „dziur”, elementy da się jednoznacznie zinterpretować, a model powstaje szybko – bez domysłów.
Przy projektach realizowanych zdalnie, np. na Bliskim Wschodzie, słabe pokrycie skanami bardzo szybko staje się poważnym problemem. Gdy danych jest mało, modelowanie i projektowanie zaczyna być zgadywaniem: brakuje informacji, pojawiają się nieciągłości, nie wiadomo dokładnie „co jest czym”.
Braki w danych = realne koszty
Gdy dane są niekompletne, pojawiają się problemy:
-
konieczność powrotu na obiekt i wykonywanie dodatkowych skanów,
-
wysyłanie kogoś na miejsce, by wykonywał zdjęcia „z ręki”,
-
akceptowanie uproszczeń i niepewności w modelu.
Każda z tych opcji oznacza dodatkowy czas, koszty i ryzyko błędów.
Dlatego w praktyce zamiast niewielkiej liczby bardzo gęstych skanów, stawiamy na dużą liczbę skanów o nieco niższej rozdzielczości, ale z dobrym pokryciem obiektu. Dzięki temu:
-
mamy kompletne dane geometryczne,
-
minimalizujemy „martwe pola”,
-
zapewniamy dobre warunki do modelowania i projektowania,
-
oszczędzamy czas na interpretacji danych – projektanci nie muszą dedukować, co gdzie się znajduje, bo wszystko jest jednoznaczne już na etapie chmury punktów.
Unified cloud i praca na danych
Z pojedynczych skanów tworzona jest jedna połączona chmura punktów (tzw. Unified), zwykle dodatkowo przefiltrowana (np. do 5 mm). To na niej wykonywane jest modelowanie 3D i dalsze prace projektowe.
Jednocześnie zachowane są wszystkie pojedyncze skany wraz z kolorami i panoramami, do których można wrócić w każdej chwili – np. przez WebPano. To ogromna przewaga przy bardziej złożonych instalacjach, gdzie dostęp do detali i kontekstu przestrzennego ma kluczowe znaczenie.
Na co zwrócić uwagę w zapytaniu ofertowym?
Przy wyborze wykonawcy skanowania 3D warto patrzeć szerzej niż tylko na parametry sprzętowe.
Nie tylko na:
-
rozdzielczość,
-
zasięg,
-
deklarowaną przez producenta dokładność skanera.
Ale przede wszystkim na:
-
szacowaną liczbę skanów dla danego obiektu.
To jeden z najlepszych wskaźników realnej jakości danych, jakie finalnie otrzymasz. Większa liczba dobrze zaplanowanych skanów oznacza mniej niepewności, szybsze projektowanie i realne oszczędności czasu i pieniędzy w całym procesie inwestycyjnym.
Podsumowanie
Rozdzielczość i zasięg skanera są ważne, ale nie decydują o sukcesie projektu.
To liczba skanów i ich rozmieszczenie mają największy wpływ na jakość końcowych danych i ich praktyczną użyteczność.
Innymi istotnymi elementami jakości danych są m.in. dokładność połączonej chmury punktów oraz poprawnie dobrany układ współrzędnych – do tych zagadnień wrócimy w kolejnych artykułach serii.
Budujesz cyfrową kopię zakładu przemysłowego?
W 3Deling wspieramy klientów w planowaniu i realizacji digitalizacji zakładów – od osnowy geodezyjnej, przez skanowanie laserowe 3D, po prace projektowe i modelowanie.
Skontaktuj się z nami, aby porozmawiać o kolejnych krokach.
